
The relaxation processes of the 2D Penrose pattern: lattice dynamics and electronic

structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 4755

(http://iopscience.iop.org/0953-8984/1/29/002)

Download details:

IP Address: 171.66.16.93

The article was downloaded on 10/05/2010 at 18:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/29
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 4755-4765. Printed in the UK 

The relaxation processes of the 2~ Penrose pattern: 
lattice dynamics and electronic structures 

Y Sasajimat, T Miural-3, M Ichimurat, M Imabayashit and 
R Yamamoto§ 

Department of Metallurgy and Materials Science, Faculty of Engineering, University of 
Ibaraki, Nakanarusawa-cho, Hitachi, Ibaraki, Japan 
0 Department of Metallurgy and Materials Science, Faculty of Engineering, University of 
Tokyo, Bunkyo-ku, Tokyo, Japan 

Received 5 January 1988, in final form 3 January 1989 

Abstract. The vibrational density of states and electronic spectra in the relaxation processes 
of the ZD Penrose pattern were calculated. The fractal-like spectra due to the self-similarity 
of the Penrose pattern drastically changed into the continuous spectra without gaps which 
reflects the FCC (1 11) crystal structure. At the critical stages defined as the intermediate states 
between the quasi-crystal and the crystal, the number of localised modes of phonons and 
electrons increased, indicating the structural transition. 

1. Introduction 

The Penrose pattern, which is widely utilised to understand the quasi-crystal structure, 
has self-similarity without translational symmetry (Ogawa 1985, Janssen 1986, Janot 
and Dubois 1988). Consequently, significant features appear in the vibrational and 
electronic spectra. The electronic structures have mainly been calculated from a theor- 
etical viewpoint (Kohmoto et a1 1983, Ostlund et af 1983). After the discovery of the 
aperiodic structure by Schechtman et a1 (1984), many papers have been written about 
the vibrational density of states and/or electronic structures of the ID Fibonacci chain 
(Lu et a1 1986, Liu and Riklund 1987, Nori and Rodriguez 1986, Machida and Fujita 
1986a,b, Kohmoto and Banavar 1986, Kohmoto 1986, Kohmoto et a1 1987, Janssen and 
Kohmoto 1988, Mookerjee and Singh 1986), the 2D Penrose pattern (Kohmoto and 
Sutherland 1986a,b, Sutherland 1986a,b, Tsunetsugu et a1 1986, Odagaki and Nguyen 
1986, Kumar and Athithan 1987) and the 3~ Penrose pattern (Marcus 1986). The 
computed spectrum has self-similarity and shows the curves which may be differentiated 
anywhere, but are continuous. Although the spectra were calculated within the tight- 
binding approximation, the electronic and lattice dynamic properties peculiar to quasi- 
crystals were revealed qualitatively. The conductance (Ueda and Tsunetsugu 1987, 
Choy 1987, Hu and Ting 1986, Mello 1987), plasmons (Sarma et a1 1986) and electron 
localisation (Sokoloff 1986, Verges et a1 1987) of the quasi-periodic structures and the 
$ Present address: The Institute for Research and Development, Minebea Co. Ltd, Asaha-cho, Iwata-gun, 
Shizuoka, Japan. 
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electronic spectra of other self-similarity patterns (Nagatani 1985) were also inves- 
tigated. In our previous letter (Sasajima et aZ1987), relaxation processes, such as the 
structural transition from the quasi-crystal (the 2~ Penrose pattern) to the normal crystal 
(the FCC (111) structure), were simulated by the molecular dynamics method. The 
changes in the phonon and electronic spectra during these processes are of great interest. 
How do the gaps found everywhere in the spectrum of the Penrose pattern vanish 
and how does the normal spectrum of the FCC (111) appear? We have computed the 
vibrational and electronic spectra of the relaxed 2~ Penrose patterns by the tight- 
binding approximation. The localisation of eigenstates was also studied by calculating the 
participation ratios. 

2. Methods of calculation 

2.1. Vibrational density of states 

The atomic vibrational frequencies normal to the atomic plane can be given as the 
solutions of the equations of motion 

where mi and zi are the mass and the displacement, respectively, normal to the atomic 
plane of the ith atom and cy is the effective coupling constant between the ith and jth 
atoms. Substituting the eigenmode solution, 

zi = (ui/%> exp(iwt) (2) 
in the equation of motion ( l ) ,  we get 

w2u. = K. ,u .  
I 11 I 

where 

K ,  = Cy/- 

is the force constant matrix. The matrix elements (4) were determined from the following 
two models. Let rii be the distance between the ith and jth atoms and assume the distance 
dependence of the matrix elements to be 

K ,  = exp[-(ry - l)]  ( 5 )  
i# ]  

where the distance is measured by the length of the edges of the Penrose tiles. We have 
considered the following cases: model I is for: 

0.9 < rii 1.1 (6) 

rii < 1. (7) 

and model I1 is for 

The diagonal elements can be derived from the translational invariance and written as 

The dynamical matrix was diagonalised to obtain the frequencies and modes of the 
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Figure 1. The atomic structures of the relaxed 
Penrose pattern at (a )  0 steps, ( b )  100 steps, (c)  
200 steps, (d )  300 steps and (e)1000 steps: -, 
nearest-neighbour bondings. The system is com- 
posed of 500 atoms. Trajectories of the particles 
are also shown in the course of the relaxation. fcJ 
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Figure 2. The changes in the phonon spectrum 
plotted against the square of angular frequency 
during the structural relaxation of the ZD Penrose 
pattern composed of 500 atoms, calculated for 
model I for the IDOS: (a)  0 steps; (b)  100 steps; (c) 
200 steps; (d )  300 steps; (e )  1000 steps. i;' 6 9 0 

01 

wz 

vibrational eigenstates. Model I selects only the networks of the sides of the Penrose 
tiles and model I1 expresses the central-force approximation or spherical symmetry of 
the s-like orbitals in the electronic structure. 

2.2 Electronic spectrum 

We assumed the following tight-binding Hamiltonian of s-type orbitals: 

H, = (ilHlj) (9 )  

where 1 i} denotes the s-type orbital of the ith atom and H is the effective one-electron 
Hamiltonian. Similar to models I and 11, non-zero matrix elements were obtained as 
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Figure 3. As figure 2 but showing the DOS and 
participation ratios which are represented by bars 
and dots, respectively. 0 3 6 9 

W2 

i H j )  = -exp[-(rij - l)] (10) ( 1i.J 

where the diagonal elements were chosen as zero in order to make the energy of the 
isolated orbital zero: 

2.3. Participation ratio 

If we write the pth eigenstate of the Hamiltonian as 
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I c l ) = L I i >  
i 

the participation ratio (Odagaki and Nguyen 1986) is defined as 

where N is the total number of atoms. P, varies from 1/N to l : P ,  = 1/N means that the 
electron at the pth eigenstate localises on an atomic site; P, = 1 means that the pth 
eigenstate is an extended state and the wavefunction of the electron is uniformly dis- 
tributed over the whole system. This parameter represents the degree of localisation 
and can also be applied to the atomic vibrational states. 

3. Results and discussion 

The vibrational spectra and the electronic spectra for the systems of 76 and 500 atoms 
were calculated. The computed results are shown only for the 500-atom case. Results 

Figure 5. Similar to figure 3 but using model 11: (a ) ,  0 steps; ( b ) ,  100 steps. 
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for the larger systems containing 1000, 1500 and 2000 atoms are similar to those con- 
taining 500 atoms. To aid discussion, the structures of the calculated 500 atoms at 0,100, 
200,300 and 1000 steps are shown in figure 1. The relaxation time step is of the order of 
10-15s. 

3.1. Phonon spectrum 

Figure ;shows the integrated density of states (IDOS) and figure 3 the density of states 
(DOS), respectively, with participation ratios which were calculated using model I. As 

Energy 

Figure 6. The changes in the electronic spectrum 
during the structural relaxation of the ZD Penrose 
pattern composed of 500 atoms, calculated for 
model I for the IDOS: (a),  0 steps; ( b ) ,  100 steps; 
(c), 200 steps; (d ) ,  300 steps; ( e ) ,  1000 steps. 
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can be seen, fractal-like gaps disappeared between 200 and 300 steps, which corresponds 
to the structural transition from the quasi-crystal to the crystal structures. The critical 
states of the transition appeared at 100 steps and show a drastic lowering of the par- 
ticipation ratios and an increase in the soft-phonon modes. In the crystal phase the IDOSS 
should be proportional to w 2  in the w + 0 limit because of the 2~ continuous-medium 
approximation. For model 11, the results at 0 and 100 steps are shown in figures 4 and 5 .  
We could not find any drastic change in the participation ratios or phonon softening in 
this model. This is probably due to the additional bondings which do not exist in model 
I. Other characteristic features of the changes in the spectra were similar to those of 
model I. 

0 1  
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0.5 1 

Energy 

i 

1 

I d )  

n , l ~ ~ ~ ~ n l !  
-i -2 0 2 i 

Energy 

Figure 7. As for figure 6 but showing the DOS and 
participation ratios which are represented by bars 
and dots, respectively. 
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Figure 8. Similar to figure 6 but using model 11: ( a ) ,  0 steps; ( b ) ,  100 steps. 

3.2. Electronic spectrum 

Figure 6 shows the IDOS and figure 7 the DOS, respectively, with participation ratios 
calculated using model I. The spectrum of the Penrose pattern (0 steps) shows fractal- 
like gaps, 7% degeneracy at zero level and inversion symmetry about the band centre. 
These exotic features are well known to be caused by self-similarity of this pattern. It 
should be noted here that zero-level degeneracy and symmetry of the spectrum are 
distinct if other bondings are included such as in model I1 (figures 8(a) and 9(a)). The 
changes in the spectrum were completed at 300 steps, which corresponds to the end 
point of the structural transition, as already mentioned above. At 100 steps, which is 
considered to be the transition stage of the structure, the number of zero-level states 
increased and participation ratios for all states drastically decreased. After these tran- 
sition stages, the spectrum shows continuous curves, and the continuous-medium 
approximation holds fairly well. For model 11, computed results show similar trends to 
those of model I but some significant features such as the lowering of participation ratios 
and an increase in the zero-level modes are not evident. We show the results at 0 and 
100 steps in figures 8 and 9. 
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Figure 9. Similar to figure 7 but using model 11: ( a ) ,  0 steps; (b) ,  100 steps. 
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4. Conclusions 

The changes in the phonon and electronic spectra for the structural transition from the 
quasi-crystal to the crystal phases were studied. Two kinds of model were examined for 
the calculation; the networks of the Penrose tiles were considered in model I and the 
spherical symmetry of the bondings was assumed in model 11. Both models showed 
completion of the structural changes at 300 steps. The continuous spectrum reflecting 
the periodicity of crystals appeared instead of fractal-like gaps caused by the quasi- 
periodic structures. Model I showed the following extra characteristic features at the 
structural transition. 

(i) The participation ratios drastically decreased in both vibrational and electronic 
spectra. 

(ii) Phonon softening and increase in the zero-level states were found for vibrational 
and electronic states. 

In this paper, the calculation was performed only for the monatomic case but these 
methods can be easily adapted to two-atom systems. The stability of the more realistic 
models of quasi-crystal structures such as those of Socolar and Steinhardt (1986) and 
Henley (1986) will be reported in the near future. 
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